
Computer Organization and Architecture: A Pedagogical Aspect. 

Prof. Jatindra Kr. Deka 

Dr. Santosh Biswas 

Dr. Arnab Sarkar 

Department of Computer Science & Engineering 

Indian Institute of Technology, Guwahati 
 

Lecture – 34 

Interrupt Driven I/O 
 

Hello everybody, welcome back to the online course on Computer Organization and 

Architecture. Now we are in a module input output subsystem. So, in our last class we have 

discussed about the issues related to input output, why I/O module is required and we have 

seen there are three ways of transfer information; one is your programmed I/O, second one is 

your interrupt driven I/O and third one is your DMA. In last class we have briefly discuss about 

the programmed I/O. 

Now, in this unit we are going to discuss about the interrupt driven I/O. So, what are the 

objective of this particular unit? So, for that I have stated three objective. 

(Refer Slide Time: 01:10). 

 

Objective 1: discuss the need of interrupt driven I/O transfer. This will be done in 

comprehension level. Objective 2: specify the control signal needed for interrupt driven I/O 

transfer and their use. So, it will be in the analysis level and objective 3: explain the design 

issues of interrupt driven I/O transfer; so, it will be in the level design. So, basically we are 

1070



going to see how to design an interrupt driven I/O. So, already I have mentioned that there are 

three ways of transfer information one is your programmed I/O. 

(Refer Slide Time: 01:45) 

 

So, in case of programmed I/O, already we have discussed that we have some problem with 

this particular portion that processor is going to check continuously, whether device is ready 

or not. If it is not ready then it will be in this particular loop and your wastage of time. So, we 

say that processor is in ideal state doing nothing. 

So, one way to look into that particular issue and how we can remove this particular 

unnecessary waiting, where CPU time is wasted. So, for that from program driven programmed 

I/O we are coming to interrupt driven I/O. So, in interrupt driven I/O what we are basically 

doing, we are trying to remove or we have removed this particular busy waiting or idle cycle. 

So, in that particular case what will happen? Processor will request for I/O transfer and after 

requesting it now, processor can do some other work if really processor can do it, because again 

there are some issues related to this particular point. 

But the processor can carry out some other work, then processor can carry out that particular 

work, then I/O module is going to make the data ready for transfer and that means, it will look 

for that status of the device, it will collect the information. And once everything is set, 

everything is ready then I/O module is going to give an interrupt signal to the processor. 

1071



It will say that now device is ready. Now we can transfer information then I/O transfer is going 

to happen. So, in that particular way what happens? We are eliminating this particular waiting 

states busy waiting state where processor is busy, but doing nothing. So, we can eliminate that 

and processor can now do something else, provided it is available processor can do that 

particular work. 

So, once this is there, then the remaining portion is same. We are going to transfer the 

information from I/O devices to processor or from processor to I/O devices and finally then we 

are going to come out. Now you are going to see what are the issues related to designing of this 

particular interrupt driven I/O. 

(Refer Slide Time: 03:54). 

 

So, basically I have explained these things overcomes CPU waiting, no repeated CPU checking 

to device, the way we used to do in our programmed I/O and I/O modules interrupt when ready. 

So, when everything is ready then I/O module interrupt the processor and says that now we are 

ready to transfer the information. 

So, these are the basic steps that we are having, what are the advantages that we are having, 

when we are going for interrupt driven I/O, eliminating of busy waiting. Now processor is not 

continuously going to check status of the device, I/O module is going to give the indication 

through interrupt signals. 

1072



(Refer Slide Time: 04:32). 

 

So, what are the basic operation that we have in case of interrupt driven I/O. So, we just say 

that CPU issues read command. So, here I am saying that read commands, but read commands 

means processor is going to take information from devices. If processor is going to put 

information to the output devices then what will happen. Then processor issues write command, 

I/O module gets data from peripheral, while CPU does some other work, now that we are 

removing their busy waiting of the processor. Now I/O module is going to look into the transfer 

of information, it will get the data from the peripheral devices and in the meantime CPU can 

carry out some other work. 

I/O module interrupts CPU. So, when everything is ready, device is ready, I/O module has 

collected the information that to be need to be transferred to the processor and then everything 

is ready, then I/O module interrupts the CPU, then after getting the interrupt request, then CPU 

requests for data. We will see what are the steps that we are having, because processor is going 

to now look for that particular I/O devices, then when CPU requests the data, then I/O modules 

transfer the data and like that we are going to transfer the information from input device to the 

processor and similarly the write operation is same, we are going to transfer information from 

processor to the output devices. 

1073



(Refer Slide Time: 05:57). 

 

Now, from CPU viewpoint then what are the actions that we are going to do, issues read 

command and processor is going to some other work, check the interrupt at the end of each 

instruction cycle. Now we are going to elaborate these things, because we need to look for the 

end of the instruction ok. Now I think you know how we are going to execute an instruction, 

program is nothing but a collection of instruction and we are going to execute it instruction by 

instruction and what we are having, what information we are having with us, we know the 

address of the next instruction, from where we need to fetch the next instruction. 

And we are keeping this particular information in program counter, you just see to execute one 

instruction basically I said that it may have two stage only fetch and execute or maybe we may 

have several stages also, because in execution phase we may have different stages; like fetching 

of data then carry out the operation write the result and like that. So, in all those cases you just 

see, we are having the information of next instruction only, we don’t have those intermediate 

information where we are currently, what stage we are doing, whether we are fetching a data 

or we are executing the instruction or carry out the operation or we are writing the result. 

So, these things are not available with us. We are having only the information of the next 

instruction that’s why processor is going to look for the interrupt at the end of this particular 

instruction cycle. So, once complete the instruction is over then only we can give the service 

for the interrupted devices, because in between we don’t have any checkpoint or any 

monitoring. We know only starting of the instruction and end of the instruction. 

1074



So, instruction cycle must be completed then only you can look for interrupt. Now when we 

are going to give service to the interrupt then what does it means? We have to perform some 

operation. Again those operation can be treated as a collection of instructions which is a 

basically nothing but again another separate computer program. So, we are going to execute 

that program and that program is basically known as your interrupt service routine. For 

different devices, we are having different interrupt service routine. 

So, basically we are going to stop the execution of the current program after completion of the 

current instruction and we are going to run the interrupt service routine ok. So, that’s why we 

are going to have run the interrupt service routine. Now I think you can correlate this situation 

with a function call. I think we have discussed that issues when we are going to discuss about 

the instruction set design and how we are going to implement it. 

So, when we are going to execute a sub function or a sub routine then what will happen, we 

temporarily suspend the execution of the main program. When we are going to suspend the 

execution of the main program, we have to store the processor status and where we are storing 

the processor status, basically we are storing it in a system stack. So, we keep all those 

information in the system stacks those that’s why we are saying that if interrupted save context 

and we are going to save context, means basically we are going to set the contents of the 

register, because those register will be used again by the interrupt service routine if these are 

general purpose register. 

Secondly, we have to store the content of the program counter even, because after completion 

of the interrupt service routine we have to come back to the current program that we are 

executing. So, we must know where to come back. So, that’s why we are going to store the 

contents of the program counter even. Again we are going to store the PSW program status 

word. So, PSW is nothing but the contents of the flag bits, because if we are performing one 

operation depending on the result of operation, we may have to take some decision. 

But if we won’t store it and while executing the interrupt service routine their flags bit maybe 

changed, it may be disturbed. So, we are not going to get the initial status. So, that’s why you 

need to save this particular PSW also, program status word. So, this is basically a context 

switching. We are switching the context from main program to the interrupt service routine. 

We are saving the context of the main program or the currently executing program in the system 

stack, then we are going to load the program counter with the starting address of the interrupt 

1075



service routine and we are going to give the service to the interrupt; that means, we are going 

to process the interrupt. 

So, when we are going to process the interrupt, depending on the interrupt service routine, 

depending on the nature of the devices, we are going to fetch data or we are going to store it. 

So, if it is an input devices we are going to fetch it and we are going to keep it in our memory. 

If it is an output device then we are going to take the information from memory and going to 

put it in the output device. So, process interrupt means, basically transferring the information. 

Once the transfer is over then what will happen, again we will come back to the main program, 

a program from where we have given the interrupt or given the service to the interrupted 

devices. So, again we have to restore the information; that means, again we are going to bring 

the information from system state to the processor; that means, we are going to restore all the 

registers value. We are going to restore the program status word and along with that we are 

going to bring the program counter values also, then we will be knowing from where we need 

to start the execution. So, from CPU viewpoint we are going to say that these are the parts that 

we need to do, when we are going to give a service for interrupt. 

(Refer Slide Time: 11:48). 

 

So, this is basically I have already explained that this is fetch, then execute and execute may 

have several stages or. Secondly, in some other instruction it needs indirect cycle, because we 

need to fetch the instruction. So, while we are performing one operation we are basically doing 

this cycle. So, when executing a program if interrupt arrives so we are getting an interrupt from 

1076



the interrupted devices or for I/O module. Then what will happen? After completion of the 

instruction before fetching the next instruction we will go for the interrupted devices or we are 

going to execute the interrupt service routine. 

At that particular point first of all we have to retain the processor status, we are going to post 

all the information to the system stack, then we are going to execute the interrupt service routine 

to give the service for that interrupt and after completion of that particular interrupt service 

routine; that means, when data transfer is over, then we are going to restore back the processor 

status; that means, we are going to pick up the information from system stack and going to put 

into the relevant registers. 

So, these are the things that we are going to do basically; one is your. So, basically it is a context 

switching ah, basically is save the context of the processor, after saving a context then process 

the interrupt, then we have to run the interrupt service routine, then after completion of these 

things restore the processor status; that means, we are going to get back the processor status 

from system stack and we are going to restore everything in the appropriate register. So, this is 

the, in indirect cycle, indirect as well as with interrupt. 

(Refer Slide Time: 13:40). 

 

Now, let what are the state diagram, we may have a slightly elaborate diagram. So, in that 

particular case what will happen? When we are going to execute a program or execute an 

instruction, first we have to get the instruction address calculation, first they have to say where 

from we have to fetch the instruction. So, this is basically nothing but we are going to get the 

1077



information from program counter, then we are going to fetch the instruction. After fancy 

fetching the instruction we have to decode the instruction, after decoding the instruction we 

will be knowing whether is there any indirect cycle or not basically, whether we have to fetch 

some more data’s or not. 

So, when indirect cycle is there then what will happen, we have to calculate the operand 

address, fetch the operands and if we need to fetch more operand then it will be in this particular 

loop ok and after completion of this particular indirection, then we will go for the operation 

data operation. We perform the data operation and finally, when we get the result, then we can 

sometimes we need to perform the operand address calculation; that means, in which memory 

location we are going to store our result. So, after getting this particular address, we are going 

to store the result or store the operand. 

And if we need to store more data then it will be in this particular flow, because if sometimes 

we may work with the vector data also. So, one operand store is over then the, it is the 

completion of the instruction, then we are coming to this particular step. In this particular step 

what will happen. We are going to check whether any interrupts are pending or not. If interrupts 

are pending then what will happen. We will go over here, we will give the service to the 

interrupted devices and if no interrupt is coming then straight away we will be coming over 

here and we will go for next address calculation. 

But in between I am having one more arrow. So, in that particular case, this is basically if we 

are working with the vector data or maybe say in an array, you just see that if I am going to 

add two arrays, then what will happen. We are performing the same operation addition only 

that was the difference. So, I am having an array 𝑎 and array 𝑏, if I am performing say 𝑎[𝑖] +

𝑏[𝑖] then what will happen. This operation is same, I am going to perform this addition 

operation. So, after performing 𝑎[1] + 𝑏[1] then what will happen? Instead of going for, going 

to look next instruction, new instruction what will happen? We know that we have to perform 

this instruction itself. 

So, we have to only get the data. So, we are straightway coming to operand address calculation; 

that means, after 1 we will go to 𝑎[2] and 𝑏[2], 𝑎[3] and 𝑏[3]. So, this is basically single 

instruction multiple data. If we are going to perform the same operation on multiple data, then 

we may design the processor in such a way that instead of fetching the instruction straightaway, 

we can go for fetching the data, you just see what happens after completion of one instruction 

1078



we are going to check for the interrupt, if there is no interrupt then what will happen? We will 

go back to the current program execution. 

But if any interrupt is pending then what will happen? We will go for this particular interrupt 

state; that means, we are going to give service to the interrupted devices, in that particular case 

we are going to save the status of the processor, we give the service to the interrupted devices, 

then we are going to restore the status of the processor and we come back to the program itself. 

So, we know that once we restore the status we know from where we have to fetch the next 

instruction and accordingly we are going to execute the program itself. 

So, this is the complete instruction cycle state diagram. So, these are the states ah, these are the 

states that we have during instruction execution. So, this is the elaborate view, some of the 

instruction may not have all the states, but some of the instruction may have all the states. It 

depends on the type of the instruction and after decoding the instruction we will be knowing 

what are the state that we have for execution of this particular instruction. This is the complete 

instruction cycle state diagram and these are the step that we have when we are going to execute 

an instruction. 

(Refer Slide Time: 18:08). 

 

Now, already I have mentioned that how we are going to give the service to the interrupt. This 

is very much similar to the function call and return. So, what basically we are doing. So, 

basically what are the steps we are having device controller or other system hardware issues an 

interrupt. So, we are getting an interrupt processor is getting an interrupt. Now say processor 

1079



finishes the execution of the current instruction. Now we must complete the current instruction, 

because we don’t have any mechanism to keep the information that what stage we are executing 

currently. 

So, that information that such several information we cannot return in that side, we are going 

to complete the current instruction after completion of the current instruction we know from 

which memory location we need to fetch the next instruction. So, at that particular point you 

can stop it. So, after completion of the current instruction what will happen? Processor signals 

acknowledgement of interrupt. Now processor give an acknowledgment signal to the 

interrupted devices or to the interrupted I/O module, which says that now processor is free to 

give the service to the interrupted devices. 

Now, processors stall at that time. So, at that particular time processor pushes the PSW and PC 

on to the control stack, already I have mentioned that. We are having a control stack, what are 

the basic information that I need to store; one is your program counter, because it will give me 

the information from where I need to fetch the next instruction of the current executing 

program. So, basically we are going to give a service to the interrupted devices we have to 

retain it. 

So, we are going to retain this particular information we are going to push it to the system stack, 

along with that we are going to store that PSW also program status word, already I have 

mentioned that these are nothing but or this is nothing but the collection of all flag bits and the 

basically the flag bit is set or reset depending on the ALU operation. So, we have to return this 

thing, because when we are going to come back to the main program then what will happens 

depending on the status, we may have to some take some other decision. So, we are going to 

stack. 

Then processor loads the new PC value, based on the interrupt. Now I am saying that for every 

interrupt we are having an interrupt service routine. So, basically now you see if this is my 

main memory and say currently we are executing this particular program, depending on the 

these things that service routine say that maybe your, this may be 1, this may be your another 

interrupt service routine. So, we must know the starting address of this particular service 

routine. 

So, we are going to load the value of the program counter with the starting address of this 

particular interrupt service routine; that means, we are setting which program we need to 

1080



execute. Now processor is going to execute this particular program. After completion of this 

particular program we will come back to this particular point wherever say your interrupt is 

coming at that particular point. So, we will come back to this particular point. So, we are setting 

it then along with that, before going to execute these things we may have to save more 

information. 

So, save the remainder of the processor state information. So, what are the processor state 

information, we are say in this particular program. When we are executing this particular 

program, we might have used some general purpose register like that 𝑅1 and 𝑅2 we are having 

some valid result. So, when I am going to execute this particular subroutine, then what will 

happen? Again we have to use those particular temporary storage those registers. So, in that 

particular case what will happen that values will be overwritten by this particular sub register 

routine. 

So, we have to store that information also. So, after storing this information, now process the 

interrupt. Now we are going to execute this particular service routine and once you complete 

it, completion of this particular service routine, then we have to come back to that particular 

point. So, this is your restore the processor step; that means, we are restoring and we are coming 

back to that particular point. So, restoring means getting the PSW, getting the your program 

counter and getting the values of all the registers and we are now coming to the initial position 

and from that we are going to execute it. 

So, this is the processor step, basically these are nothing but the contents of the general purpose 

register we are going to restore it, because we have to restore it in this particular order only, 

because we are using a system stack, this is push and pop and stack is your last in first out, 

whatever we have entered last we have to pop out first, then I am going to put it in the 

appropriate register, then we are going to pop out program counter and PSW and we are going 

to store it. 

Now you just see that here it is mentioned that this is something is written as hardware and it 

is software. So that means, some portion we are going to do in the hardware level; that means, 

when we are going to design the instruction we are going to put everything into the processor 

itself. 

So, up to this point we are doing it in the hardware level, again this particular point, basically, 

though it is written over here, you can say that this is basically we are going to do into the 

1081



software level, what we are doing save the remainder of the state information basically that 

storing the general purpose register value. Now why you have shifted to the software side, say 

if you think that we are having a processor which say 16 general purpose register ok, in that 

particular case what will happen? All the 16 may be used in a main program. Again we may 

require all the 16 processor may be in the subroutine also we do not know, we cannot predict 

anything. 

So, if we are going to do everything in hardware, then what will happen we have to store the 

values of those particular 16 general purpose register also interrupt state; that means, we have 

to push all those values of the 16 register to the stack and after completion of these things, 

when we are going to use this particular restore it, then we have to again bring all those things 

to the processor. So, it is basically a very heavy instruction, because we have to do lot of work, 

but many a time you may find that out of 16 general purpose register, hardly we may be using 

say 4 registers in this particular program. 

So that means, the values of those 4 registers are relevant, other 12 registers are irrelevant. So, 

what we basically do, if we are going to do it in the software level then we can check that 

information also, how many registers are active in this particular program segment and 

depending on that only we are going to store those particular register only. So, it will be reduced 

also, so that’s why this portion when we are going to implement this portion generally we are 

not implementing in your hardware, we generally keep it for the programmer when 

programmer is going to use like such type of service routine, depending on the situation in this 

particular interrupt service routine programmer, programmer is going to store those particular 

register value into the stack and after that it is going to perform the interrupt service routine. 

And after completion of the interrupt service routine, since that interrupt service routine knows 

that it has stored 4 registers values to the stack, it is going to pop out those particular 4 register 

values and store it into the processor register. So, after that the execution of this particular 

interrupt service routine is over, then again these things will be done in our hardware level. So, 

this is also will be done in your software. So, this will be done in our hardware level; that 

means, again we are going to restore the processor status word and program counter ok. 

This is the way that we can say or you can say that again, maybe in program itself we can write 

it, if we don’t have any other instruction. So, these are the portion that we are doing in the 

hardware level. So, this is, you just see that in interrupt we are implementing something in the 

1082



hardware and we are implementing something into the software, just to have a balance. If we 

are going to do everything in the hardware then what will happen? This particular interrupt 

handling situation will be a complex one and it will be a heavy instruction. So, that’s why 

something we are doing into the hardware and something we are doing into the software. 

So, you just see that I think similar scenario, we are doing in the function call or subroutine 

call. So, in that particular case what will happen, this portion here instead of process of 

interrupt, this is basically your subroutine process, execute the subroutine and this entire 

portion will be done into the software that storing the values of general purpose register and 

restoring the general purpose register after completion of this particular subroutine and this 

portion will be done with another instruction which is known as your return instruction in your 

instruction set. 

So, for subroutine call we are having one instruction for CALL, for calling the subroutine and 

one instruction is RETURN to return from the subroutine. So, in that particular case, this is the 

portion that we are going to do it in CALL, this portion will be done in the software and this 

portion will be done in the RETURN instruction. So, the method is same execution of interrupt 

and execution of subroutine, but for your subroutine call, we are calling it with the instruction 

CALL and returning it from with the instruction RETURN, but in case of interrupt with an 

control signal, we are initiating this process and after completion of these things we will go 

back to this particular point. 

So, this is the simple interrupt processing and these are tasks we need to do while performing 

the interrupt. Now what is the program status word? Already I have mentioned that these are 

nothing but a set of bits and this set of bits basically includes result of the last instruction that 

we have executed on may be your sign bit, zero bit, carry bit, equal bit and overflow bit. 

1083


